Error estimates for semi-discrete dendritic growth

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Estimates for Semi-discrete Gauge Methods for the Navier-stokes Equations : First-order Schemes

The gauge formulation of the Navier-Stokes equations for incompressible fluids is a new projection method. It splits the velocity u = a+∇φ in terms of auxiliary (non-physical) variables a and φ, and replaces the momentum equation by a heat-like equation for a and the incompressibility constraint by a diffusion equation for φ. This paper studies four time-discrete algorithms based on this splitt...

متن کامل

Error estimates for semi-discrete gauge methods for the Navier-Stokes equations

The gauge formulation of the Navier-Stokes equations for incompressible fluids is a new projection method. It splits the velocity u = a+∇φ in terms of auxiliary (nonphysical) variables a and φ and replaces the momentum equation by a heat-like equation for a and the incompressibility constraint by a diffusion equation for φ. This paper studies two time-discrete algorithms based on this splitting...

متن کامل

Interior error estimates for semi-discrete Galerkin approximations for parabolic equations

The initial boundary value problemfor the heat équation in a domain Q and the corresponding standard Galerkin method is consideied A certain regularity of the initial data in some subdomain Q1 leads to the same regularity of the solution in Q± and for ail times It is shown that the error between the exact solution and the Galerkm approximation is also of (almost) optimal order m the intenor ofQ...

متن کامل

Pointwise a posteriori error estimates for monotone semi-linear equations

We derive upper and lower a posteriori estimates for the maximum norm error in finite element solutions of monotone semi-linear equations. The estimates hold for Lagrange elements of any fixed order, non-smooth nonlinearities, and take numerical integration into account. The proof hinges on constructing continuous barrier functions by correcting the discrete solution appropriately, and then app...

متن کامل

Error estimates for semi-Galerkin approximations of nonhomogeneous incompressible fluids

We consider the spectral semi-Galerkin method applied to the nonhomogeneous Navier-Stokes equations. Under certain conditions it is known that the approximate solutions constructed through this method converge to a global strong solution of these equations. Here, we derive an optimal uniform in time error estimate in the H norm for the velocity. We also derive an error estimate for the density ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Interfaces and Free Boundaries

سال: 1999

ISSN: 1463-9963

DOI: 10.4171/ifb/10